La ricerca ha trovato 73 risultati

da C_Paradise
sabato 16 febbraio 2019, 21:03
Forum: Istituzioni di Analisi Matematica
Argomento: Continuità sequenziale vs grafico chiuso
Risposte: 2
Visite : 169

Re: Continuità sequenziale vs grafico chiuso

Semplicemente qui hai più ipotesi, infatti stiamo dicendo che se la coppia (x_n,f(x_n)) \to (x_{\infty},y_{\infty}) allora y_{\infty}=f(x_{\infty}) , cioè abbiamo un’ipotesi sulla coppia, in particolare sappiamo già che le immagini convergono a qualcosa. Nel caso dell...
da C_Paradise
mercoledì 6 febbraio 2019, 1:54
Forum: Istituzioni di Analisi Matematica
Argomento: Raccolta di esercizi - Minimizing the distance from a point - Ex.3
Risposte: 3
Visite : 187

Re: Raccolta di esercizi - Minimizing the distance from a point - Ex.3

Riguardo all’ultima domanda che ho fatto mi sono accorto che non è difficile e purtroppo me ne accorgo solo ora, comunque se le norme sono [math] e [math] allora la mappa che manda [math] in [math] se [math] e che manda zero in zero dovrebbe andare bene..
da C_Paradise
mercoledì 6 febbraio 2019, 1:16
Forum: Istituzioni di Analisi Matematica
Argomento: Limite uniforme (sui limitati) di operatori compatti è compatto
Risposte: 9
Visite : 376

Re: Limite uniforme (sui limitati) di operatori compatti è compatto

Non so se è ho capito bene il tuo dubbio, comunque la chiusura di [math] è compatta e quindi totalmente limitata, d’altra parte un insieme è totalmente limitato se e solo se lo è la sua chiusura e quindi anche [math] è totalmente limitata..
da C_Paradise
mercoledì 6 febbraio 2019, 0:57
Forum: Istituzioni di Analisi Matematica
Argomento: Raccolta di esercizi - Minimizing the distance from a point - Ex.3
Risposte: 3
Visite : 187

Re: Raccolta di esercizi - Minimizing the distance from a point - Ex.3

Provo a dire qualcosa, il problema secondo me è che i punti P,Q che minimizzano in norma p non è detto che minimizzino anche in norma 2 . Di conseguenza quando usi la regola del parallelogramma non si può dire che ||P-x_0||_2 = D_2 dove D_2=\min\{||Z-x_0||_2 : Z \in K\} perché sappiamo solo che ||P-...
da C_Paradise
lunedì 4 febbraio 2019, 23:01
Forum: Istituzioni di Analisi Matematica
Argomento: Raccolta di esercizi - Minimizing the distance from a point - Ex.4
Risposte: 2
Visite : 178

Re: Raccolta di esercizi - Minimizing the distance from a point - Ex.4

Ciao! Non mi tornano le ultime due righe, ad esempio se prendo x_0=0 ho che tutti i punti di K sono di minimo. L’esempio si dovrebbe sistemare prendendo K=\{(1+1/n)e_n\}_n e considerando sempre x_0=0 , ti convince? In ogni caso non sto dicendo che il tuo esempio non va bene, ma che quanto sc...
da C_Paradise
sabato 5 gennaio 2019, 17:58
Forum: Istituzioni di Analisi Matematica
Argomento: Simulazione scritto d'esame
Risposte: 66
Visite : 3075

Re: Simulazione scritto d'esame

Avevo risposto di fretta, ci penso un altro po’..
da C_Paradise
sabato 5 gennaio 2019, 17:29
Forum: Istituzioni di Analisi Matematica
Argomento: Simulazione scritto d'esame
Risposte: 66
Visite : 3075

Re: Simulazione scritto d'esame

Sì, pensavo alla versione iterata del teorema in alto a lezione 44.
da C_Paradise
sabato 5 gennaio 2019, 15:05
Forum: Istituzioni di Analisi Matematica
Argomento: Simulazione scritto d'esame
Risposte: 66
Visite : 3075

Re: Simulazione scritto d'esame

Per prima cosa il fatto che il seno sia Lipschitz non mi sembra bastare per dire che se u \in H^2(\mathbb{R}^d) allora anche \sin u \in H^2(\mathbb{R}^d) .. Per quanto riguarda il resto se chiamiamo g(x,y,z)=u(x,y,z)^{8102} abbiamo per esempio che \displaystyle D_{x,x...
da C_Paradise
sabato 5 gennaio 2019, 13:33
Forum: Istituzioni di Analisi Matematica
Argomento: Simulazione scritto d'esame
Risposte: 66
Visite : 3075

Re: Simulazione scritto d'esame

Il seno è Lipschitz :mrgreen:
da C_Paradise
sabato 5 gennaio 2019, 11:27
Forum: Istituzioni di Analisi Matematica
Argomento: Simulazione scritto d'esame
Risposte: 66
Visite : 3075

Re: Simulazione scritto d'esame

I termini che danno fastidio dovrebbero essere (D_{x_i}u)^2 perché a priori stanno solo in L^1 , ma il fatto che \Omega sia decente dovrebbe dirci ad esempio che D_{x_i}u \in L^6 ? Di conseguenza avremmo che (D_{x_i}u)^2 \in L^3 e dunque in L^2 perché l'insieme ha misura finita. Una ...
da C_Paradise
venerdì 4 gennaio 2019, 19:14
Forum: Istituzioni di Analisi Matematica
Argomento: Simulazione scritto d'esame
Risposte: 66
Visite : 3075

Re: Simulazione scritto d'esame

Perché se ho convergenza in [math] a meno di sottosuccessioni ho convergenza quasi ovunque (questo sì) e dominata di [math]?


Se non ricordo male segue dalla dimostrazione che esiste la sotto che converge quasi ovunque, comunque provo a ricordarmela e poi a postarla!
da C_Paradise
venerdì 4 gennaio 2019, 17:21
Forum: Istituzioni di Analisi Matematica
Argomento: Simulazione scritto d'esame
Risposte: 66
Visite : 3075

Re: Simulazione scritto d'esame

Provo a rispondere a un altro paio di punti. Per la semicontinuità della parte di funzione possiamo usare Fatou perché se u_n \to u_{\infty} in L^2 abbiamo una sottosuccessione u_{n_k} che converge quasi ovunque. Di conseguenza anche u_{n_k}^{8102} \to u_{\infty}^{8102} quasi ovunque e ora possiamo ...
da C_Paradise
venerdì 4 gennaio 2019, 16:14
Forum: Istituzioni di Analisi Matematica
Argomento: Simulazione scritto d'esame
Risposte: 66
Visite : 3075

Re: Simulazione scritto d'esame

Per quanto riguarda il troncamento supponiamo che lo vogliamo fare solo dall'alto allora la funzione troncata ad altezza M sarà il minimo puntuale tra la funzione e M. Ma ora 2\min\{u(x), M\}=u(x)+M - |u(x) - M| quindi sfruttando il fatto che il modulo di Sobolev è Sobolev ot...
da C_Paradise
sabato 1 settembre 2018, 22:44
Forum: Calcolo delle Variazioni
Argomento: Dubbio nel calcolo del rilassato
Risposte: 6
Visite : 451

Re: Dubbio nel calcolo del rilassato

Ciao! Il funzionale G(u) è continuo ad esempio perché è composizione di funzioni continue, in particolare è la norma (L2) al quadrato di una traslazione.. In uno spazio normato la norma è sempre una funzione continua per via della disuguaglianza triangolare
da C_Paradise
venerdì 6 luglio 2018, 15:43
Forum: Calcolo Vettoriale
Argomento: Teoria: Calcolo vettoriale e integrali con parametro
Risposte: 2
Visite : 394

Re: Teoria: Calcolo vettoriale e integrali con parametro

Ciao! Provo a risponderti io :) Partiamo con due parole sulla continuità in una variabile uniforme rispetto all'altra. Sia f(x,y) \colon A \times B \to \mathbb{R} con A \subset \mathbb{R}^n, \ B \subset \mathbb{R}^m diciamo che f è continua in x uniformemente in y se \forall x \in A \ \foral...

Vai alla ricerca avanzata