Pagina 1 di 1

10 Limiti che richiederebbero verifica ...

Inviato: mercoledì 5 settembre 2012, 11:16
da Noisemaker
Gentile professore, Il procedimento è corretto per questi limiti?

1) \displaystyle\lim_{n \to +\infty} \Big[\Big(1+\frac{1}{n^2}\Big)^n-1\Big]^{\sqrt n}

Siamo in presenza di una forma indeterminata del tipo 0^{\infty}; allora scriviamo il limite in forma esponenziale:

\displaystyle\lim_{n \to +\infty}e^{\sqrt n \ln\Big[\Big(1+\frac{1}{n^2}\Big)^n-1\Big]}

consideriamo il limite dell'esponente:

\displaystyle\lim_{n \to +\infty} \sqrt n \ln\Big[\Big(1+\frac{1}{n^2}\Big)^n-1\Big]

essendo, per n\to+\infty, \displaystyle  \Big(1+\frac{1}{n^2}\Big)^n \to 1 in quanto si ha \displaystyle   \Big(1+\frac{1}{n^2}\Big)^n=\Big(1+\frac{1}{n^2}\Big)^{n^2\cdot\frac{1}{n}} =e^{\frac{1}{n}}=e^0=1

allora \displaystyle  \ln\Big[\Big(1+\frac{1}{n^2}\Big)^n-1\Big]\to -\infty, e il limte diviene:

\displaystyle\lim_{n \to +\infty}e^{(+\infty) (-\infty)}=e^{-\infty}=0


2) \displaystyle\lim_{x \to +\infty}  \frac{\ln(1+7^x)}{\ln^2 x}\codt\Big(1-\cos\frac{\ln x}{\sqrt x}\Big)

Siamo in presenza di na forma indeterminata del tipo +\infty\cdot 0; allora osserviamo che, quando x\to+\infty

\displaystyle\ln(1+7^x)\sim\ln 7^x, \quad \frac{\ln x}{\sqrt x}\to 0 \Rightarrow \Big(1-\cos\frac{\ln x}{\sqrt x}\Big)\sim \frac{\ln^2 x}{2x}

e quindi il limite diventa:

\displaystyle\lim_{x \to +\infty}  \frac{\ln(1+7^x)}{\ln^2 x}\cdot\Big(1-\cos\frac{\ln x}{\sqrt x}\Big)\sim \lim_{x \to +\infty}  \frac{\ln 7^x }{\ln^2 x}\cdot\frac{\ln^2 x}{2x} \displaystyle=\lim_{x \to +\infty}  \frac{x\ln 7   }{\ln^2 x}\cdot\frac{\ln^2 x}{2x}=\frac{\ln7}{2}


3) \displaystyle\lim_{x\to 0^+}\frac{\left[\cos{\left(\sin x\right)}\right]^{\frac{1}{x}}-x^{\sin x}}{\ln{\left[\left(2e^x-1\right)^{\ln {x^2}}\right]}+\frac{1}{x^{10}}\cdot e^{-\frac{1}{2\sqrt x}}}

Considerando le stime asintotiche si ha:

\displaystyle\lim_{x\to 0^+}\frac{\left[\cos{\left(\sin x\right)}\right]^{\frac{1}{x}}-x^{\sin x}}{\ln{\left[\left(2e^x-1\right)^{\ln {x^2}}\right]}+\frac{1}{x^{10}}\cdot e^{-\frac{1}{2\sqrt x}}} \displaystyle=\lim_{x\to 0^+}\frac{\left(\cos x\right)^{\frac{1}{x}}-x^{  x}}{\ln {x^2}\ln{\left[\left(2e^x-1\right) \right]}+\frac{1}{x^{10}}\cdot e^{-\frac{1}{2\sqrt x}}} \displaystyle=\lim_{x\to 0^+}\frac{e^{\frac{1}{x}\ln{\cos x}}- e^{x\ln x}}{\ln x^2\cdot(2e^x-2)+\frac{1}{x^{10}}\cdot e^{-\frac{1}{2\sqrt x}}} \displaystyle\sim\lim_{x\to 0^+}\frac{e^{\frac{1}{x}(\cos x -1)}- e^{x\ln x}}{2\ln x^2\cdot(e^x-1)+\frac{1}{x^{10}}\cdot e^{-\frac{1}{2\sqrt x}}} \displaystyle\sim\lim_{x\to 0^+}\frac{e^{-\frac{1}{x}\cdot \frac{1}{2}x^2}- e^{x\ln x}}{4x\ln x  +\frac{1}{x^{10}}\cdot e^{-\frac{1}{2\sqrt x}}} \displaystyle=\lim_{x\to 0^+}\frac{e^{-\frac{x}{2}}-1+1- e^{x\ln x}}{4x\ln x  +\frac{1}{x^{10}}\cdot e^{-\frac{1}{2\sqrt x}}} \displaystyle\sim\lim_{x\to 0^+}\frac{- \frac{x}{2} -  x\ln x }{4x\ln x  +\frac{1}{x^{10}}\cdot e^{-\frac{1}{2\sqrt x}}} \displaystyle=\lim_{x\to 0^+}\frac{-x\ln x \left( \frac{x}{2x\ln x }+  1\right)}{x\ln x\left( 4+ \frac{e^{-\frac{1}{2\sqrt x}}}{x^{11} \ln x} \right)} \displaystyle=\lim_{x\to 0^+}\frac{ - \frac{1}{2\ln x } -  1 }{ 4+ \frac{e^{-\frac{1}{2\sqrt x}}}{x^{11} \ln x}}= \frac{0-1}{4-0}=-\frac{1}{4}

\displaystyle\mbox{essendo}\,\,\, \lim_{x\to 0^+}\frac{e^{-\frac{1}{2\sqrt x}}}{x^{11} \ln x} \displaystyle \sim \lim_{x\to 0^+} \frac{e^{-\frac{1}{x}}}{x^{\alpha}  \ln x}\displaystyle =\lim_{x\to 0^+}\frac{e^{-\frac{1}{x}}}{x^{\alpha}}\cdot \frac{1}{  \ln x}=0\cdot0=0


4) \displaystyle\lim_{x\to 1}\frac{\left(1-\sqrt x\right)\left(1-\sqrt[3] x\right)\left(1-\sqrt[4] x\right)\cdot ...\cdot\left(1-\sqrt[n] x\right)  }   {\left(1-x\right)^{n-1} },\quad n\in\mathbb{N}

Ricordando che il limite del prodotto è uguale al prodotto dei limiti, ammesso che questi esistano, possiamo scrivere:

\displaystyle \underbrace{ \lim_{x\to 1}\frac{ 1-\sqrt x }{1-x}\cdot\lim_{x\to 1}\frac{ 1-\sqrt [3]x }{1-x}\cdot\lim_{x\to 1}\frac{ 1-\sqrt [4]x }{1-x}\cdot ... \cdot\lim_{x\to 1}\frac{ 1-\sqrt [n]x}{1-x}}_{(n-1) volte} \quad

\mbox{ponendo $t_j=\sqrt [j]x,\,\,\,  j=1,2, ...n-1,$\,\,\,\,otteniamo}

t_1=\sqrt []x\,\,\,\Rightarrow\,\,\, x =t_1^2,\quad t_2=\sqrt [3 ]x\,\,\,\Rightarrow\,\,\, x =t_2^3, \cdots\quad t_{n-1}=\sqrt [n-1]x \,\,\,\Rightarrow \,\,\, x =t_{n-1}^n,

\mbox{e dunque il limite dato risulta:}

\displaystyle \lim_{t_1\to 1}\frac{ 1-t_1 }{1-t_1^2}\cdot\lim_{t_2\to 1}\frac{ 1-t_2 }{1-t_2^3}\cdot\lim_{t_3\to 1}\frac{ 1-t_3 }{1-t_3^4}\cdot ... \cdot \lim_{t_{n-1}\to 1}\frac{ 1-t_{n-1} }{1-t_{n-1}^n}

\mbox{e ricordando che: }

\displaystyle(a^n-b^n)=(a-b)(a^{n-1}+a^{n-2}b+\cdot+ab^{n-2}+b^{n-1})

\displaystyle=\lim_{t_1\to 1}\frac{ 1-t_1 }{(1-t_1)(1+t_1)}\cdot\lim_{t_2\to 1}\frac{ 1-t_2 }{(1-t_2)(t_2^2 +t_2+1)} \cdot ... \displaystyle\cdot \lim_{t_{n-1}\to 1}\frac{ 1-t_{n-1} }{(1-t_{n-1})(t_{n-1}^{n-1}+t_{n-2}^{n-2}+\cdots+t +1) }
\displaystyle =\lim_{t_1\to 1}\frac{ 1 }{ 1+t_1 }\cdot\lim_{t_2\to 1}\frac{ 1 }{ t_2^2 +t_2+1 } \cdot ...\displaystyle \cdot \lim_{t_{n-1}\to 1}\frac{1 }{t_{n-1}^{n-1}+t_{n-2}^{n-2}+\cdots+t +1} \displaystyle= \frac{ 1 }{ 2 }\cdot\frac{ 1 }{ 3 }\cdot\frac{ 1 }{4 }\cdot...\cdot\frac{ 1 }{n }=\frac{ 1 }{n! }


5) \displaystyle\lim_{n\to +\infty} \left[ \left(a+\frac{1}{n}\right)^2 +\left(a+\frac{2}{n}\right)^2+ \dots + \left(a+\frac{n-1}{n}\right)^2\right],\quad a>0

Osserviamo che il limite in forma compatta diventa:

\displaystyle\lim_{n\to +\infty} \left[ \left(a+\frac{1}{n}\right)^2 +\left(a+\frac{2}{n}\right)^2+ \dots + \left(a+\frac{n-1}{n}\right)^2\right] \displaystyle=\lim_{n\to +\infty}\sum_{k=1}^{n-1}\left(a+\frac{k}{n}\right)^2

cioè, svolgendo i calcoli entro il simbolo di sommatoria:

\displaystyle\sum_{k=1}^{n-1}(\frac{an+k}{n})^2=\sum_{k=1}^{n-1}\frac{(an+k)^2}{n^2}

Allora si ha:

\displaystyle\lim_{n\to +\infty} \sum_{k=1}^{n-1}\frac{(an+k)^2}{n^2} \displaystyle =\lim_{n\to +\infty}\frac{1}{n^2}\sum_{k=1}^{n-1}{\left(an+k\right)^2} \displaystyle =\frac{1}{n^2}\sum_{k=1}^{n-1}{(a^2n^2+2ank+k^2)} \displaystyle =\frac{1}{n^2}\left[{a^2n^2}+2an\sum_{k=1}^{n-1}k+\sum_{k=1}^{n-1}k^2\right]

\mbox{e ricordando che:}

\displaystyle\sum_{k=1}^{n}k=1+2+3\dots+n=\frac{n(n+1)}{2},\quad \displaystyle\sum_{k=1}^{n}k=1^2+2^2+3^2\dots+n^2=\frac{n(n+1)(2n+1)}{6}

\mbox{il limite dato risulta:}

\displaystyle\lim_{n\to +\infty}\frac{1}{n^2}\left[{a^2n^2}+2an\frac{n(n+1)}{2}+\frac{n(n+1)(2n+1)}{6}\right] \displaystyle=\frac{n^3(6a+2)+n^2(6a^2+6a)+3n^2+n}{6n^2}=+\infty


6) \displaystyle \lim_{x\to 0} \biggl(1 + x e^{-  \frac{1}{x^2}}+\sin \frac{1}{x^4}\biggr)^{e^{\frac{1}{x^2}}}

Cominciamo con il riscrivere il limite come segue:

\displaystyle\lim_{x\to 0} \biggl(1 + x e^{-  \frac{1}{x^2}}+\sin \frac{1}{x^4}\biggr)^{e^{\frac{1}{x^2}}} \displaystyle=\lim_{x\to 0} \biggl( 1 + x  \frac{1}{e^{\frac{1}{x^2}}} +\sin \frac{1}{x^4}\biggr)^{e^{\frac{1}{x^2}}},

\mbox{e analizziamo i vari addendi del limite:}

\displaystyle \frac{x}{e^{\frac{1}{x^2}}}\to 0

\displaystyle \sin \frac{1}{x^4}\to \not \exists

\displaystyle e^{\frac{1}{x^2}}\to+\infty.

Il problema in questo caso, sta nel fatto che abbiamo un addendo del limite che non esiste; allora consideriamo le due successioni:

\displaystyle a_n=\frac{\pi}{2}+2n\pi\quad\text{e}\quad b_n=\frac{3\pi}{2}+2n\pi

allora, la funzione \displaystyle\sin \frac{1}{x^4} calcolata nei valori della successione a_n , con k intero positivo, tende a 1 , mentre calcolata nei valori della successione b_n tende a -1 , cioè:

\displaystyle \lim_{n\to +\infty} \sin{a_n}=1\quad\text{e}\quad\lim_{n\to +\infty} \sin{b_n}=-1.


Ora poniamo prima

\displaystyle\frac{1}{x^4}=a_n\,\,\,\text{da cui}\quad\frac{1}{x^2}=\sqrt{a_n}\quad\text{e}\quad x=a_n^{-\frac{1}{4}},

e successivamente

\displaystyle\frac{1}{x^4}=b_n\,\,\text{da cui}\quad\frac{1}{x^2}=\sqrt{b_n} \quad\text{e}\quad x=b_n^{-\frac{1}{4}},

e calcolando i due limiti abbiamo:

\displaystyle\lim_{n\to +\infty} \biggl( 1 + a_n^{-\frac{1}{4}}\cdot \frac{1}{e^{\sqrt{a_n}}} +\sin{a_n}\biggr)^{e^{\sqrt{a_n}}}=+\infty,

\,\,\,\text {essendo}\,\,\, a_n^{-\frac{1}{4}}\cdot \frac{1}{e^{\sqrt{a_n}}}\to 0,\,\,\,\sin{a_n}\to1,\,\,\, e^{\sqrt{a_n}}\to+\infty

\displaystyle\lim_{n\to +\infty} \biggl( 1 + b_n^{-\frac{1}{4}}\cdot \frac{1}{e^{\sqrt{b_n}}} +\sin{b_n}\biggr)^{e^{\sqrt{b_n}}}= \displaystyle\lim_{n\to +\infty}e^{e^{\sqrt{b_n}}\ln \biggl( 1 + b_n^{-\frac{1}{4}}\cdot \frac{1}{e^{\sqrt{b_n}}} +\sin{b_n}\biggr)}=0,

\text {essendo}\,\,\, e^{\sqrt{b_n}}\to +\infty,\,\,\, b_n^{-\frac{1}{4}}\cdot \frac{1}{e^{\sqrt{b_n}}}\to0 , \sin{b_n}\to-1,\,\,\,\,\Rightarrow e^{+\infty \ln{(1+0-1)}}=e^{(+\infty) \cdot (-\infty)}=e^{(-\infty)}=0

Per l'unicità del limite si può concludere che il limite dato non esiste.


7) \displaystyle\lim_{n\to +\infty}\frac{(n+3)^{n+1}\cdot\ln n-n!\sin(3n+2)\cos n}{n\sqrt {\ln n}\left(n^n\sqrt {\ln n}-4\arctan(\ln n)\right)}


Anzitutto, svolgendo il prodotto a denominatore, scriviamo cioè il limite come segue:

\displaystyle\lim_{n\to +\infty}\frac{(n+3)^{n+1}\cdot\ln n-n!\sin(3n+2)\cos n}{n^{(n+1)}\ln n-4 n\sqrt {\ln n}\arctan(\ln n)}

Cerchiamo di stabilire l'infinito dominante a numeratore, osservando che, quando n\to +\infty

- \displaystyle\frac {\ln n}{(n+3)^{n+1}} =\frac {\ln n}{(n+3)^{n}}\cdot\frac{1}{n+3}\to 0;

- \displaystyle \frac{n!\sin(3n+2)\cos n}{(n+3)^{n+1}} \displaystyle =\frac{n!}{(n+3)^{n}}\cdot\begin{matrix} \overbrace{ \begin{matrix} \underbrace{\frac{\sin(3n+2)}{n+3} }_{\text{infinitesima per limitata $\to$ infinitesima}}\cdot\cos n  \end{matrix} }^{\text{infinitesima per limitata $\to$ infinitesima}} \end{matrix} \to 0

allora :

\displaystyle(n+3)^{n+1}\cdot\ln n-n!\sin(3n+2)\cos n\sim (n+3)^{n+1}

Analogamente, stabiliamo l'infinito dominante a denominatore:


-\displaystyle\frac {\ln n}{n^{n+1}} =\frac {\ln n}{n^{n}}\cdot\frac{1}{n}\to 0;

-\displaystyle\frac{ 4n\sqrt {\ln n}\arctan(\ln n) }{n^{n+1}}=\frac{4\sqrt {\ln n}\arctan(\ln n) }{n^n}=\frac{4\sqrt {\ln n}}{n^n}\cdot\frac{\pi}{2}\to 0

e dunque:

\displaystyle n\sqrt {\ln n}\left(n^n\sqrt {\ln n}-4\arctan(\ln n)\right)\sim n^{n+1}

Allora il limite dato equivale a :


\displaystyle\lim_{n\to +\infty}\frac{(n+3)^{n+1}\cdot\ln n-n!\sin(3n+2)\cos n}{n\sqrt {\ln n}\left(n^n\sqrt {\ln n}-4\arctan(\ln n)\right)} \displaystyle\sim\lim_{n\to +\infty}\frac{(n+3)^{n+1} }{ n^{n+1} } \displaystyle=\lim_{n\to +\infty}\left(1+\frac{3}{ n}\right)^n\cdot\frac{n+3}{n}=e^3


8) \displaystyle\lim_{n\to +\infty}\left[\left(\frac{2a^2}{a^2+1}\right)^n-\frac{1}{n^{5a}}\right],\qquad a\in \mathbb{R^+}


Ricordiamo che la funzione esponenziale a^x risulta crescente se a>1 ,mentre risulta decrescente se a<1; allora nel risolvere il limite dobbiamo tenere conto della variazione della base del primo addendo, per stabilire appunto quando l'esponenziale risulti crescente (e quindi divergente a +\infty), oppure decrescente (e quindi convergente a 0 ).Dunque abbiamo che


\displaystyle\frac{2a^2}{a^2+1}>1 \Leftrightarrow \displaystyle\frac{2a^2-a^2-1}{a^2+1}>0 \Leftrightarrow a^2-1>0 \Leftrightarrow a<-1\lor a>1

allora si distinguono i seguenti casi:

\mbox{se }\,\,\ a<-1

\left[\left(\frac{2a^2}{a^2+1}\right)^n-\frac{1}{n^{5a}}\right] =\left[\left(\frac{2a^2}{a^2+1}\right)^n-n^{5a}\right] =\left( A^n-n^{5a}\right)=A^n\left(1-\frac{n^{5a}}{A^n}\right)=+\infty

in questo caso la base del termine esponenziale è maggiore di uno e l'esponente della potenza è minore di zero;

\mbox{se }\,\,\  a=-1

\left[\left(\frac{2a^2}{a^2+1}\right)^n-\frac{1}{n^{5a}}\right] =\left[\left(1\right)^n-n^{5 }\right]=\left( 1-n^{5}\right)=-\infty

in questo caso \frac{2a^2}{a^2+1} = 1 e l'esponete della potenza vale 5;

\mbox{se }\,\, -1<a<0

\left[\left(\frac{2a^2}{a^2+1}\right)^n-\frac{1}{n^{5a}}\right] =\left[\left(\frac{2a^2}{a^2+1}\right)^n-n^{5a}\right]=\left( 0-n^{5a}\right)=-\infty

in questo caso la base del termine esponenziale è 1<a<0 e l'esponente della potenza è minore di zero:

\mbox{se }\,\, a=0

\left[\left(\frac{2a^2}{a^2+1}\right)^n-\frac{1}{n^{5a}}\right]=\left[0-1\right]= -1

in questo caso \frac{2a^2}{a^2+1} = 0 e l'esponete della potenza vale 1;

\mbox{se }\,\, 0<a<1

\left[\left(\frac{2a^2}{a^2+1}\right)^n-\frac{1}{n^{5a}}\right]=\left( 0-0\right)=0

in questo caso la base del termine esponenziale è0<a<1 e l'esponente della potenza è maggiore di zero;

\mbox{se }\,\, a=1

\left[\left(\frac{2a^2}{a^2+1}\right)^n-\frac{1}{n^{5a}}\right]=\left[\left(1\right)^n-\frac{1}{n^{5}}\right]=\left(1-0\right)=1

in questo caso \frac{2a^2}{a^2+1} = 1 e l'esponete della potenza vale 5;

\mbox{se }\,\, a>1

\left[\left(\frac{2a^2}{a^2+1}\right)^n-\frac{1}{n^{5a}}\right]=\left[\left(+\infty\right) -0\right]=+\infty

in questo caso la base del termine esponenziale è maggiore di uno e l'esponente della potenza è maggiore di zero.


9) \displaystyle\lim_{x\to 0^+}\frac{x^{-\frac{21}{5}}\left(e^{-\frac{1}{x^4+x^2\ln^2 x}}+1-\frac{x}{x+3}\cos x -\frac{3+\ln{\left(1+\frac{x^3}{2}\right)}}{x+3}\right)}{x^x+\cos {x^{\frac{1}{5}}}+\frac{1}{2}x^{\frac{1}{5}}\sin{x^{\frac{1}{5}}}-2e^{x^2}}

Considerando dapprima il numeratore, si osserva che quando \displaystyle x\to 0^+,\,\,\ e^{-\frac{1}{x^4+x^2\ln^2 x}}\sim e^{-\frac{1}{x}} ,e dunque si ha:

\displaystyle\lim_{x\to 0^+} x^{-\frac{21}{5}}\left(e^{-\frac{1}{x^4+x^2\ln^2 x}}+1-\frac{x}{x+3}\cos x -\frac{3+\ln{\left(1+\frac{x^3}{2}\right)}}{x+3}\right) \displaystyle\sim\lim_{x\to 0^+} \frac{e^{-\frac{1}{x}}+1-\frac{x}{x+3}\cos x -\frac{3+\ln{\left(1+\frac{x^3}{2}\right)}}{x+3}}{x^{ \frac{21}{5}}}
\displaystyle= \lim_{x\to 0^+} \frac{e^{-\frac{1}{x }}-\frac{1}{x+3}\left[-x-3+x\cos x + 3+\ln{\left(1+\frac{x^3}{2}\right)} \right]}{x^{ \frac{21}{5}}}\displaystyle\stackrel{(\bf T)}{=}\lim_{x\to 0^+} \frac{e^{-\frac{1}{x }}-\frac{1}{x+3}\left[-x-3+x\left(1- \frac{x^2}{2} + \frac{x^4}{24}\right) + 3+ \frac{x^3}{2}  \right]}{x^{ \frac{21}{5}}}
\displaystyle=\lim_{x\to 0^+} \frac{e^{-\frac{1}{x }}-\frac{x^5}{24(x+3)} }{x^{ \frac{21}{5}}} \displaystyle=\lim_{x\to 0^+} \frac{e^{-\frac{1}{x }}}{x^{ \frac{21}{5}}}-\frac{ \frac{x^5}{24(x+3)}}{x^{ \frac{21}{5}}} \displaystyle=\lim_{x\to 0^+}0 - \frac{x^{\frac{4}{5}}}{24(x+3) } \displaystyle=\lim_{x\to 0^+} - \frac{x^{\frac{4}{5}}}{24(x+3) }

Consideriamo ora il denominatore:

\displaystyle x^x+\cos {x^{\frac{1}{5}}}+\frac{1}{2}x^{\frac{1}{5}}\sin{x^{\frac{1}{5}}}-2e^{x^2}\stackrel{(\bf T)}{=} \displaystyle\lim_{x\to 0^+}e^{x\ln x}+ \left(1- \frac{x^{\frac{2}{5}}}{2}+\frac{x^{\frac{4}{5}}}{24}   \right) \displaystyle+\frac{x^{\frac{1}{5}}}{2}\left(x^{\frac{1}{5}} -\frac{x^{\frac{3}{5}}}{6} \right) \displaystyle-2\left(1+ x^2+x^4  \right) \displaystyle=\lim_{x\to 0^+}e^{x\ln x}+ 1- \frac{x^{\frac{2}{5}}}{2}+\frac{x^{\frac{4}{5}}}{24} +\frac{x^{\frac{2}{5}}}{2}  -\frac{x^{\frac{4}{5}}}{12}-2 +o(x) \displaystyle=\lim_{x\to 0^+}e^{x\ln x}-1 -\frac{x^{\frac{4}{5}}}{24} \displaystyle\sim\lim_{x\to 0^+} x\ln x  -\frac{x^{\frac{4}{5}}}{24} \displaystyle=\lim_{x\to 0^+} x^{\frac{4}{5}}\left(x^{\frac{1}{5}}\ln x-\frac{1}{24}\right)

In definitiva il limite dato s'approssima a:


\displaystyle\lim_{x\to 0^+}\frac{x^{-\frac{21}{5}}\left(e^{-\frac{1}{x^4+x^2\ln^2 x}}+1-\frac{x}{x+3}\cos x -\frac{3+\ln{\left(1+\frac{x^3}{2}\right)}}{x+3}\right)}{x^x+\cos {x^{\frac{1}{5}}}+\frac{1}{2}x^{\frac{1}{5}}\sin{x^{\frac{1}{5}}}-2e^{x^2}}\displaystyle\sim\lim_{x\to 0^+}- \frac{\frac{x^{\frac{4}{5}}}{24(x+3) } }{x^{\frac{4}{5}}\left(x^{\frac{1}{5}}\ln x-\frac{1}{24}\right)}
\displaystyle=\lim_{x\to 0^+}-\frac{x^{\frac{4}{5}}}{24(x+3) }\cdot\frac{1}{x^{\frac{4}{5}}\left(x^{\frac{1}{5}}\ln x-\frac{1}{24}\right)}= \displaystyle- \frac{1}{24(0+3) }\cdot\frac{1}{  0-\frac{1}{24} }=\frac{1}{3}


10)\displaystyle\lim_{x\to  a}\, \left(1+6\left(\frac{\sin x}{x^2}\right)^x\cdot\frac{\log(1+10^x)}{x}\right),\quad a=+\infty,\,\,\,a=0

Consideriamo il primo caso:

\displaystyle \lim_{x\to +\infty}\, \left(1+6\left(\frac{\sin x}{x^2}\right)^x\cdot\frac{\log(1+10^x)}{x}\right)\displaystyle\sim\lim_{x\to +\infty}\, 1+6\left(  \frac{\sin^x x}{x^{2x}} \cdot\frac{\log 10^x }{x}\right) \displaystyle=\lim_{x\to +\infty}\, 1+6\left(  \frac{\sin^x x}{x^{2x}}   \right)\quad\mbox{osservando che}

\displaystyle\left|\frac{\sin x}{x^2} \right|<\frac{1}{x^2},\,\,\,\,\text{pertanto} \left|\left(\frac{\sin x}{x^2}\right)^x\right|<\frac{1}{x^{2x}}\to 0 \,\,\,\, (x\to+\infty): \,\,\,\, \text{infatti} \,\,\,\displaystyle\lim_{x\to+\infty} \frac{1}{x^{2x}}=\lim_{x\to +\infty} e^{-2x\log x}=0

\displaystyle=\lim_{x\to +\infty}\, 1+6\left(  \frac{\sin^x x}{x^{2x}}   \right)=1+6\cdot0=1

Consideriamo il secondo caso

\displaystyle\lim_{x\to 0}\, \left(1+6\left(\frac{\sin x}{x^2}\right)^x\cdot\frac{\log(1+10^x)}{x}\right) \displaystyle\sim\lim_{x\to 0}\, 1+\frac{6\log2}{x}\left(\frac{\sin x}{x^2}\right)^x \displaystyle\sim  \lim_{x\to 0}\, 1+\frac{6\log2}{x}\left(\frac{ 1}{x}\right)^x= +\infty

\text{essendo} \,\,\,\displaystyle\lim_{x\to0}\left(\frac{1}{x}\right)^x \displaystyle=\lim_{x\to 0} e^{ x\ln \left(\frac{1}{x}\right)}\to \lim_{x\to 0}\, x\ln \left(\frac{1}{x}\right) \displaystyle=\lim_{x\to 0}\, \frac{\ln \left(\frac{1}{x }\right)}{\frac{1}{x}} \displaystyle=\lim_{t\to +\infty}\, \frac{\ln t}{t}=0\to e^0=1

Re: Limiti :Verifica

Inviato: giovedì 6 settembre 2012, 11:45
da PLA
Nonostante ti consigli di non dar peso alla cosa :D, (attendiamo un parere più autorevole...) anche io ho risolto i limiti esattamente a questa maniera.

O meglio, per il primo ho usato lo stesso procedimento. Per il secondo, un procedimento leggermente diverso, ma, in soldoni, neanche troppo.
Avevo comunque dei dubbi riguardo l'attendibilità del procedimento perché alcuni passaggi mi sembravano troppo "brutali".

Ma mi spiego meglio:
per risolvere il secondo limite ho usato il cambio di variabile t=1/x , ritrovandomi questo limite:

\lim_{t \to 0}\frac{log(1+7^\frac{1}{t})}{-\log^2 t}*(1-\cos (-\log t *\sqrt{t})

A questo punti, moltiplicando e dividendo per t, ho ricavato il limite notevole:

\lim_{t \to 0}\frac{(1-\cos (-\log t *\sqrt{t})}{-\log^2 t *t} = \frac{1}{2}

Resta quindi da sistemare il pezzo: t*\log(1+7^\frac{1}{t})

che ho risolto brutalmente così, ma vorrei sapere se va bene o se c'è un procedimento più corretto:

t*\log(1+7^\frac{1}{t}) \approx \log(1+7^\frac{1}{t})^t  \approx \log(7^\frac{1}{t})^t  \approx \log7

Il risultato del limite è \frac{1}{2}*\log7

Re: 10 Limiti che richiederebbero verifica ...

Inviato: giovedì 6 settembre 2012, 12:43
da PLA
Ho appena notato che, evidentemente, prima non si era caricata bene la pagina.
Vedevo soltanto i primi due limiti.
Ne approfitterò per fare anche gli altri e confrontare un po' le soluzioni :)

Re: 10 Limiti che richiederebbero verifica ...

Inviato: giovedì 6 settembre 2012, 12:47
da Noisemaker
PLA ha scritto:Ho appena notato che, evidentemente, prima non si era caricata bene la pagina.
Vedevo soltanto i primi due limiti.
Ne approfitterò per fare anche gli altri e confrontare un po' le soluzioni :)

:wink: :wink: